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a b s t r a c t

Hinge lines are loci of high curvature points on folded surfaces. They are significant geometrical features
of geological folds, and the arrangement of hinge lines constructed for the surface serves to characterize
important aspects of the fold pattern. Since the current definition of hinge line is only appropriate for
cylindrical folds, we propose a new definition for use with folds of general shape. Like the concept of
ridge lines used in differential geometry, the new definition uses the lines of curvature (principal
curvature trajectories) as a reference frame for comparing curvatures across the surface. A hinge line
passes through points of extreme principal curvature magnitude observed along the corresponding
principal curvature trajectory. Two types of hinge lines are defined and methods for constructing hinge
lines are suggested.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Recently developed surveying methods allow the mapping of
folded geological surfaces in three dimensions. 3D seismic
reflection methods are employed to map subsurface structures,
whereas GPS and laser scanning methods are being increasingly
used to survey well-exposed structural surfaces (Bergbauer and
Pollard, 2004; Pearce et al., 2006). Whilst these data provide the
potential for gaining new insights concerning the process of
folding (Pollard and Fletcher, 2005), they also highlight the
inadequacy of a number of existing methods of geometrical
analysis. The latter were mainly devised to cater for folds
outcropping at the surface where information on the folded
surface is little more than two-dimensional.

New 3D methods for describing and analysing folded surfaces,
founded on the concepts of differential geometry, are being devised
to address the above problems (Pollard and Fletcher, 2005; Lisle
and Toimil, 2007; Mynatt et al., 2007). For example, approaches
have been proposed for dissecting a general folded surface into
individual folds, and for distinguishing antiformal and synformal
folds (Lisle and Toimil, 2007).
All rights reserved.
Hinge lines, the subject of this paper, are key geometrical
features of folds. The patterns of hinge lines are important in
relation to the structural location of hydrocarbon fields (e.g.
Al-Mahmoud et al., 2009), fracture prediction in hydrocarbon
reservoirs (e.g. Stephenson et al., 2007), prediction of the direction
of subsurface elongation of ore-bodies (e.g. Duuring et al., 2007),
the analysis of structures produced by multiple folding events
(Ramsay, 1967), and to folding processes in shear zones (Ghosh
et al., 1999; Alsop and Carreras, 2007) or around diapirs (Jackson
et al., 1990).

In the present paper, we examine the existing definition of the
hinge line. The term, hinge line, refers to the locus of points of
maximum curvature on the folded surface (Fig. 1). Sets of hinge
lines drawn on a folded surface serve to illustrate the folding
pattern, refolded geometries, and relationships between different
fold sets. However, we discover that the existing definition of hinge
line is inadequate for general use, and therefore a new definition
based on the concepts of differential geometry is proposed. In
devising the new definition, our aim is to provide a conceptual
framework for the practical construction of hinge lines on folded
surfaces whilst honouring the essential meaning of the existing
term. Fortunately, we have been assisted in our aims by current
research in non-geological fields where it is found useful to draw
feature lines along the main creases of a curved surface, and to use
the pattern of such lines as ‘‘shape fingerprints’’ of the surface. For
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Fig. 1. Cylindrically folded surfaces possess true profile planes, e.g. section A. Points of
maximum curvature of the folded surface observed in the profile plane, H, lie on the
fold’s hinge line, H–H. In general, points of greatest curvature observed on other
oblique section planes, e.g. H0 on section B, do not lie on the hinge line.

Fig. 2. The definition of principal curvatures, k1 and k2, and the principal curvature
directions at a point P on a folded geological surface.
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this reason, literature relating to face recognition (Gordon and
Vincent, 1992), analysis of medical images (Thurion and Gourdon,
1996), computer-aided design (Lukács and Andor, 1998) and food
engineering (Sivertsen et al., 2009) are pertinent to the issues
addressed in this paper.

2. Existing definitions of the term hinge line

Formal definitions of the term, fold hinge line, vary, though the
consensus view is that it is a line on a folded surface along which
the curvature of the surface reaches a local maximum. As such, it
separates adjacent regions of lesser curvature called fold limbs.

A historical review of the concept by Wilson and Cosgrove
(1982) reports that the definition of hinge line as the locus of points
of large curvature has prevailed at least since the early part of the
20th century (e.g. Haug, 1924; Bonte, 1953; Stockwell, 1950; Wil-
son, 1961). Some authors have defined the term in a more specific
sense by limiting its application to cylindrical, or approximately
cylindrical, folds (Wegman, 1929; Clark and McIntyre, 1951). Such
hinges are straight lines, or nearly so. Fleuty (1964), however,
considered this latter usage to be too restrictive, suggesting that for
non-cylindrical folds the hinge line can be drawn through points of
maximum curvature observed on serial cross-sections through the
folded surface. This definition corresponds to that by Turner and
Weiss (1963), Ramsay (1967) and Marshak and Mitra (1988) and
results in hinges that are not necessarily straight lines.

When applied to folds that do not deviate greatly from the
cylindrical type, the above definition of Turner and Weiss (1963) is
workable and generally leads to satisfactory results. However, from
a theoretical point of view the definition is flawed, and this leads to
practical problems in locating the hinges of non-cylindrical folds.
The essence of the problem lies in the choice of the orientation of
the plane of section used to determine hinge points. It is well
known that the curvature and the location of the point of greatest
curvature observed on a 2D section are strongly influenced by the
orientation of the section plane through a folded surface (Fig. 1). For
instance, even in the case of cylindrical folds, the points of
maximum curvature observed on an oblique section do not
generally lie on the true hinge line of the fold (Schryver, 1966).
Fleuty’s (1964) suggestion to determine hinge points on serial
sections parallel to the fold’s profile plane provides no solution to
this problem because non-cylindrical folds do not possess profile
planes or natural cross-sections.

In summary, current definitions do not permit the drawing of
hinge lines on non-cylindrically folded surfaces. This issue presents
a real problem for fold analysis, especially as recent technological
advances in mapping suggest that non-cylindrical folds are the
norm rather than the exception.
3. General definition of hinge line

Cylindrical folds possess natural profile planes; planes perpen-
dicular to the fold axis (generator). On a serial set of such planes,
points of maximum curvature can be identified and then linked to
form the hinge line. However, this procedure is not possible in the
case of non-cylindrical folds because they lack true profile planes
for the observation of curvature variations. To overcome this
problem, we propose a modified definition of hinge line based on
the concept of ridge lines used in the field of differential geometry
(e.g. Koenderink, 1990, p. 291). The ridge lines referred to here are
not to be confused with ridges in the topographic sense.

At any point, P, on a curved surface the curvature of the surface
can be observed in section planes normal to the plane tangential to
the surface at P. In general, these values of normal curvatures vary
with the direction chosen for the normal section. In fact, these
normal curvatures change systematically as the normal section
plane is turned, and reach extreme values in two orthogonal
directions of the section plane (Fig. 2). These are the principal
curvatures k1 and k2 at P, where k1> k2 and where convex-upward
curvature is positive. The principal curvatures are associated with
two perpendicular directions in the surface called the principal
curvature directions.

Lines of curvature, or principal curvature trajectories, are curves
drawn on the surface whose tangents at any point are parallel to
one of the principal curvature directions (Fig. 3). Therefore, two sets
of principal trajectories, corresponding to k1 and k2 directions,
respectively, form an orthogonal mesh on the surface. Ridge lines
are the locus of points where the k1 and k2 reach extreme values
along their respective trajectories (Koenderink, 1990; Belyaev and
Anoshkina, 2005, p. 50). The curvature trajectories therefore
provide a convenient reference frame for the assessment of



Fig. 3. Example of a folded surface draped with one family of principal curvature
trajectories. The zebra stripes are principal curvature trajectories corresponding to
principal curvature with the greater absolute value (from Kim et al., 2003, with
permission). Strong hinge points are points of maximal absolute curvature along these
trajectories.
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extreme of curvature, and are a generalization of the function of the
profile plane through cylindrical folds. Suppe (1985) uses curvature
trajectories to define the term hinge line in relation to cylindrical
folds.

We define fold hinge lines as special types of ridge lines.
Reference is made to principal curvatures jkjmax, jkjmin labelled
according to their absolute magnitudes (i.e. disregarding sign). Two
types of hinge lines are distinguished. The first type is the locus of
points where jkjmax achieves a maximum in absolute value along its
own trajectory (Fig. 4). These are named strong hinge lines because
they correspond to pronounced, perceptually salient feature lines
on the surface. They are the most useful hinge lines for defining the
undulations of the surface. Strong hinge lines are antiformal or
synformal depending on whether the principal curvature with the
greater absolute magnitude is positive or negative, respectively. In
other words, strong antiformal and synformal hinges only exist on
antiforms and synforms, respectively, i.e., on folds where the mean
curvature is positive and negative, respectively (Lisle and Toimil,
2007). The second type of hinge line is defined as the locus of points
Fig. 4. Principal curvature trajectories (solid) and hinge lines (dashed), Strong hinge
points (circles); weak hinge points (squares).
where jkjmin achieves a maximum in absolute value along its
trajectory. These so-called weak hinge lines are antiformal or syn-
formal depending on the sign of the principal curvature that has the
lower absolute value.
4. Properties of hinge lines

Some properties of hinge lines are worthy of note. They are
intrinsic features that have fixed locations within a folded surface,
and are unaffected by body rotation of the surface, though the
antiformal and synformal labels may interchange. Hinges cannot
pass through points on the surface where jk1j ¼ jk2j. The reason is
that at such points, which include umbilical points where k1¼ k2 as
well as points on the boundaries of antiformal and synformal folds
where the mean curvature is zero (Lisle and Toimil, 2007), are
points where curvature trajectories for jkjmax and jkjmin cannot be
distinguished.

In the case of cylindrical folds, the hinge lines constructed in
the manner of Turner and Weiss (1963) are the same as those
obtained from the new definition. Thus, the new definition
subsumes rather than replaces the old one. Such folds are special
in the sense that they possess strong hinges but no weak ones.
Another special feature of such folds is that the hinge lines are
parallel with principal curvature trajectories. In the general case,
fold hinges are not themselves curvature trajectories (Koenderink,
1990, p. 292). However, any line of symmetry in the surface is
both a principal curvature trajectory and a fold hinge line
(Porteous, 1994, p. 162).
5. Methods of constructing hinge lines

Current interest within a number of non-geological disciplines
in lines of extremal curvature on surfaces has resulted in a large
number of algorithms of potential application for the computation
of the hinge lines on folded surfaces, e.g. Yoshizawa et al. (2008)
and papers cited therein. Discussion of different approaches is
beyond the present remit. Instead, we outline two alternative
strategies to demonstrate the feasibility of this type of analysis.

For both of the methods described, input data are required that
describe the location of points on the surface to be analyzed. The
data format corresponds to x, y, z coordinates of these points, where
z is the height (z) of the surface at a given different points x, y across
a map. Data of this kind can be obtained from seismic mapping
software, from high precision GPS surveying of exposed folded
surfaces (e.g. Xu et al., 2000; Pearce et al., 2006) or from 3D laser
scanning of outcrops or hand specimens (Buckley et al., 2008).
These data are used to compute principal curvatures at points
across the surface. Different algorithms have been proposed for the
calculation of principal curvatures for geological surfaces (Lisle and
Robinson, 1995; Samson and Mallett, 1997; Ozkaya, 2002; Bergba-
uer et al., 2003; Bergbauer and Pollard, 2003; Pearce et al., 2006).
Although some software for seismic interpretation calculates some
curvature properties these rarely include principal curvatures.

Our estimated principal curvatures were calculated from data
points arranged in a square-grid using a FORTRAN 95 program
based on the procedures laid out by Bergbauer and Pollard (2003).
The program estimates principal curvatures at grid nodes, but does
not have the capability for drawing the principal curvature trajec-
tories across the surface. It is anticipated that the latter capability
(e.g. Kalogerakis et al., 2009) will eventually simplify the drawing of
fold hinge lines on geological surfaces. The two methods described
below were chosen because they require only gridded curvature
values.
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5.1. Automatic method

This strategy is based on the algorithm of Belyaev and Anoshkina
(2005). This approach seeks to identify hinge points by comparing
the principal curvature value of each data grid node, P, with the
principal curvatures at its eight neighbours (Fig. 5). The aim is to
consider whether the absolute magnitude of the principal curvature
at P is extremal, i.e. whether the magnitude at P exceeds the
magnitudes at PA and PB, where PA and PB are located on the
perimeter of the box defined by the eight neighbours and lie on the
line PA–P–PB which is parallel to the corresponding principal
curvature direction at P. Since PA and PB are not grid points, their
curvature values have to be estimated by bilinear interpolation
(Belyaev and Anoshkina, 2005). The point P is considered to be
a hinge point if the curvature at P exceeds that at PA and at PB (Fig. 5).

Since computing hinge lines involves estimation of high-order
surface derivatives, these surface features are very sensitive to noise.
This method in its basic form is adversely affected by noise. The
result is an abundance of hinge points distributed diffusely rather
than along curvilinear hinge lines. Several authors have suggested
procedures that may help alleviate this problem of noisy data, e.g.
Stewart and Wynn (2000), Bergbauer et al. (2003), Belyaev and
Anoshkina (2005), Kim and Kim (2005) and Yoshizawa et al. (2008).
Fig. 6. Method for drawing hinge lines. (a) A simulated folded surface represented by
structure contours. (b) Principal curvature with maximum absolute value; directions
shown as dashes, absolute magnitude shown as contours; H is a hinge point. (c)
Structure contours and constructed hinge line (strong hinge).
5.2. Semi-automatic method

This strategy is an intuitive procedure that requires manual
input during the selection of hinge points and the drawing of hinge
lines. As with the previous method, the data required for defining
the folded surface consist of the coordinates (x, y, z) of points
arranged on a regular grid (Fig. 6). At each grid node the principal
curvatures, k1 and k2, as well as their directions, are computed (e.g.
Bergbauer and Pollard, 2003). The two principal curvatures are
then ordered in terms of their absolute magnitudes, jkjmax and
jkjmin , and their variation across the surface displayed by means of
curvature isoline maps. The corresponding principal curvature
directions are used to construct the direction field maps.

Strong hinge lines are constructed by overlaying the curvature
isoline map of jkjmax and the direction field map of jkjmax (Fig. 5b).
Hinge points are located by visually tracking along the curvature
trajectories, i.e. traversing whilst following the direction field, until
a local maximum of jkjmax is found (point H in Fig. 6b). These hinge
points, when joined together, form the hinge line (Fig. 6c). Weak
hinge lines are found in the same manner but by using the isoline
and direction field maps of jkjmin.
Fig. 5. Principle of an automatic method of detecting hinge points from an array of
grid points with calculated principal curvatures, k. P is a hinge point with k at P
exceeds k at points PA and PB, where the line PA–P–PB is parallel to the principal
curvature direction at P, and where the principal curvatures at PA and PB are estimated
by linear interpolation between neighbouring points.
The semi-automatic method is applied to an example of a seis-
mically mapped folded horizon of Kimmeridgian age, off-shore
northern Spain (confidential commercial data). Fig. 7 is a map
showing structure contours, antiformal and synformal folds
bounded by the contour of zero mean curvature (Lisle and Toimil,
2007) and strong hinge lines. This map illustrates the fact that
hinge lines are not reliably discernable simply from inspection of
the curvature of the structure contours. For example, points of
maximum curvature of the structure contours do not generally lie
on hinge lines. This is because the form of structure contours is
governed only by curvature of the surface in a horizontal plane,
whereas the hinge line is related to principal curvatures. Secondly,
this example reminds us that the hinge lines do not necessarily
coincide with the crestal portions of folds where the fold reaches
maximum elevation. We also note that hinge lines are not contin-
uous linear features, but are themselves curved and can loose their
identity and disappear.

In the southern part of the map, the hinge lines define an
orthogonal pattern indicating two perpendicular fold directions
and a dome-and-basin structure. In general the antiformal areas,
areas where the mean curvature is positive, tend to be blob-like in
map view. The hinge lines with the synformal regions often wrap
around the antiformal areas, suggesting a rim-syncline geometry
around diapiric antiforms.



Fig. 7. Hinge line map, seismically mapped horizon, Kimmeridgian, Cantabrian-Basque
Basin, N. Spain. Structure contours, thin lines; strong hinge lines, thick lines. Antiforms
(red) and synforms (blue) are bounded by the zero mean curvature contour (Lisle and
Toimil, 2007). Width of map 25 km.
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6. Conclusions

Given the existence of more 3D data sets from structural
surfaces and the computational advances for describing and rep-
resenting those surfaces, the need for efficient accurate techniques
for geometrical analysis of the acquired data increases.

An established technique for structural analysis is the construc-
tion of hinge lines to portray the major undulations of the folded
surfaces. However, existing definitions of the hinge line are inap-
propriate for use with folds of non-cylindrical shape. We therefore
propose a revised definition with general application, based on the
concept of ridge lines used in the field of differential geometry.
Further work is required to develop efficient strategies for the
automatic identification of hinge lines on geological surfaces.

Hinge lines cannot be mapped by inspection of the structure
contour pattern, making computation necessary. For example,
points of maximum curvature of structure contours do not gener-
ally lie on a hinge line. Furthermore, closed loops of the contours
indicating a local maximum or minimum altitude of the surface do
not necessary contain part of the hinge line.
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Bonte, A., 1953. Introduction à la lecture des cartes geologiques. Masson.
Buckley, S.J., Howell, J.A., Enge, H.D., Kurze, T.H., 2008. Terrestrial laser scanning in

geology: data acquisition, processing and accuracy considerations. Journal of
the Geological Society 165, 625–638.

Clark, R.H., McIntyre, D.B., 1951. The use of the terms pitch and plunge. American
Journal of Science 249, 591–599.

Duuring, P., Bleeker, W., Beresford, S.W., 2007. Structural modification of the
komatiite-associated Harmony nickel sulphide deposits, Leinster, Western
Australia. Economic Geology 102, 277–297.

Fleuty, M.J., 1964. The description of folds. Proceedings of the Geologists’ Associa-
tion 75, 461–492.

Ghosh, S.K., Hazra, S., Sengupta, S., 1999. Planar, non-planar and refolded sheath
folds in the Phulad Shear zone, Rajasthan, India. Journal of Structural Geology
21, 1715–1729.

Gordon, G.G., Vincent, L., 1992. Application of morphology to feature extraction for
face recognition. Proceedings of SPIE/SPSE 1658, 151–164.
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